Constructing a Mimetic Curl using Gauss’ Theorem

نویسندگان

  • Eduardo Sanchez
  • Guillermo Miranda
  • Jose Castillo
چکیده

The common way to define a curl operator considers Stoke’s Theorem and the concept of circulation. Common numerical discretizations for this operator also use this approach. In this work, we revisit the construction of the curl operator using an extended form of Gauss’ Divergence Theorem instead. This new approach allows us to present a discretization framework that naturally inherits all the desirable properties of the mimetic differential operators. We present the mathematical justification for this new approach and we test the mimetic curl operator on 2D test cases. Physical applications concern the computational study of hurricanes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods

Abstract. Accurate discrete analogs of differential operators that satisfy the identities and theorems of vector and tensor calculus provide reliable finite difference methods for approximating the solutions to a wide class of partial differential equations. These methods mimic many fundamental properties of the underlying physical problem including conservation laws, symmetries in the solution...

متن کامل

Mathematical Methods I

2 Vector Analysis 6 2.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Scalar Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 The Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 The Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 The Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

The Classical Version of Stokes’ Theorem Revisited

Abstract. Using only fairly simple and elementary considerations essentially from first year undergraduate mathematics we show how the classical Stokes’ theorem for any given surface and vector field in R follows from an application of Gauss’ divergence theorem to a suitable modification of the vector field in a tubular shell around the given surface. The two stated classical theorems are (like...

متن کامل

On Sha’s Secondary Chern-euler Class

In the spirit of Chern’s proof of the Gauss-Bonnet theorem, we show that Sha’s secondary Chern-Euler form Ψ is exact away from the outward and inward unit normal vectors by constructing a form Γ such that dΓ = Ψ. Using Stokes’ theorem, this evaluates the boundary term α∗(Ψ)[M ] in Sha’s relative Poincaré-Hopf theorem in terms of more classical local indices, Ind ∂+V and Ind ∂−V , for the tangen...

متن کامل

Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid

The support operator method designs mimetic finite difference schemes by first constructing a discrete divergence operator based on the divergence theorem, and then defining the discrete gradient operator as the adjoint operator of the divergence based on the Gauss theorem connecting the divergence and gradient operators, which remains valid also in the discrete case. When evaluating the discre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014